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Abstract. Artificial intelligence is driving one of the most important revolutions
in organic chemistry. Multiple platforms, including tools for reaction prediction and
synthesis planning based on machine learning, successfully became part of the organic
chemists’ daily laboratory, assisting in domain-specific synthetic problems. Unlike
reaction prediction and retrosynthetic models, reaction yields models have been less
investigated, despite the enormous potential of accurately predicting them. Reaction
yields models, describing the percentage of the reactants that is converted to the desired
products, could guide chemists and help them select high-yielding reactions and score
synthesis routes, reducing the number of attempts. So far, yield predictions have
been predominantly performed for high-throughput experiments using a categorical
(one-hot) encoding of reactants, concatenated molecular fingerprints, or computed
chemical descriptors. Here, we extend the application of natural language processing
architectures to predict reaction properties given a text-based representation of the
reaction, using an encoder transformer model combined with a regression layer. We
demonstrate outstanding prediction performance on two high-throughput experiment
reactions sets. An analysis of the yields reported in the open-source USPTO data set
shows that their distribution differs depending on the mass scale, limiting the dataset
applicability in reaction yields predictions.

1. Introduction

Chemical reactions in organic chemistry are described by writing the structural formula
of reactants and products separated by an arrow, which describes the chemical
transformation by specifying how the atoms rearrange between one or several reactant
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molecules and one or several product molecules [1]. Economical, logistic and energetic
considerations drive chemists to prefer chemical transformations that are capable of
converting all reactant molecules into products with the highest yield possible. However,
the quantitative conversion of reactants into products is undermined by side-reactions,
degradation of reactants, reagents or products in the course of the reaction, equilibrium
processes with incomplete conversion to product, or simply by product isolation and
purification, rarely reaching optimal performance.

Reaction yields are usually reported as a percentage of the theoretical chemical
conversion, i.e. the percentage of the reactant molecules successfully converted to the
desired product compared to the theoretical value. It is not uncommon for chemists
to synthesise a molecule in a dozen or more reaction steps. Hence, low-yield reactions
may have a disastrous effect on the overall route yield because of the multiplicative
effect between the individual steps. Therefore, it is not surprising that much effort in
organic chemistry research is dedicated to designing new reactions with higher yields
than existing ones.

In practice, specific chemical reaction classes are characterised by lower or higher
yields, with the actual yield depending on the reaction conditions (temperature,
concentrations, etc.) and on the specific substrates.

Estimating the reaction yield can be a game-changing asset for synthesis planning.
It provides chemists with the ability to evaluate the overall yield of complex reaction
paths, addressing possible shortcomings well ahead of investing hours and materials in
wet lab experiments. Computational models for the prediction of reaction yields could
support synthetic chemists in the choice of an appropriate synthesis route among many
predicted by data-driven algorithms. Moreover, reaction yields prediction models could
also be employed as scoring functions in computer-assisted retrosynthesis route planning
tools [2, 3, 4, 5], to complement forward prediction models [6 4] and in-scope filters [2].

Most of the existing efforts in constructing models for the prediction of reactivity or
of reaction yields focused on a particular reaction class: oxidative dehydrogenations of
ethylbenzene with tin oxide catalysts [7], reactions of vanadium selenites [8], Buchwald—
Hartwig aminations [9, [10} [11], and Suzuki-Miyaura cross-coupling reactions [12], 13 [14].
To the best of our knowledge, there was only one attempt to design a general purpose
prediction model for reactivity and yields, without applicability constraints to a specific
reaction class [15]. In this work, the authors design a model predicting whether the
reaction yield is above or below a threshold value, and come to the conclusion that the
models and descriptors they consider cannot deliver satisfactory results.

Here, we build on our own legacy of treating organic chemistry as a language to
introduce a new model that predicts reaction yields starting from reaction SMILES
[16]. More specifically, we fine-tune the rxnfp models by Schwaller et al. [I7] based on
a BERT-encoder [18] by extending it with a regression layer to predict reaction yields.
BERT encoders belong to the transformer model family, which have revolutionised
natural language processing [19, [18]. These models take sequences of tokens as input
to compute contextualised representations of all the input tokens, and can be applied
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to reactions represented in the SMILES [20] format. Here, we demonstrate for the first
time, that these natural language architectures are very effective not only when working
with language tokens, but also to provide descriptors of high quality to predict reaction
properties such as reaction yields.

Our approach can be trained both on data specific to a given reaction class or on
data representing different reaction types. Accordingly, we evaluate it on two different
kinds of data sets. First, we train the model on two high-throughput experimentation
(HTE) data sets. Several HTE reaction data sets have been published in recent years.
We selected the data sets for palladium-catalysed Buchwald-Hartwig reactions provided
by Ahneman et al. [9] and for Suzuki-Miyaura coupling reactions provided by Perera et
al. [21]. Second, we train our model on patent data available in the USPTO data set
[22, 23].

Both data sets are very different in terms of content and quality. HTE data sets
typically cover a very narrow region in the chemical reaction space. The analysed
reactions belong to one or a few reaction templates for which the outcomes of
combinations of selected precursors (reactants, solvents, bases, catalysts, etc.) are
investigated. In contrast, patent reactions cover a much wider reaction space. In
terms of quality, in the HTE data sets the reactions are represented in a uniform
manner and the reported yields reported were all measured with the same analytical
equipment, providing a robust quality assurance protocol. In comparison, the
yields from patents were measured by a different scientist using different equipment.
Incomplete information, such as unreported reagents or reaction conditions, in the
original documents and the extensive limitation in text mining technologies makes the
entire set of patent reactions quite noisy and sparse. An extensive analysis of the
USPTO data set, revealed that the experimental conditions and reaction parameters,
such as scale of the reaction, concentrations, temperature, pressure, or reaction duration,
may have an important effect on the measured reactions yields. This poses additional
constraints, as the model presented in this work does not consider explicitly those values
in the reaction descriptor. In fact, the basic assumption is that every reaction yield
reported in the data set is optimised with respect to the reaction parameters.

Our best performing model reached an R? score of 0.952 on a random split of
the Buchwald-Hartwig data set while the highest R? score on the smoothed USPTO
data was 0.388. These numbers reflect how the intrinsic data set limitations increase
the complexity of training a sufficiently good performing model on the patent data,
resulting into a more difficult challenge than training a model for the HTE data set.

2. Models & experimental pipeline

We base our models directly on the reaction fingerprint (rxnfp) models by Schwaller et
al. [17]. Accordingly, the encoder model size is fixed and we only consider the dropout
rate and learning rate for hyperparameter tuning, thus avoiding often encountered
difficulties of neural networks with numerous hyperparameters. During our experiments,
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we observed good performances for a wide range of dropout rates (from 0.1 to 0.8) and
conclude that the initial learning rate is the most important hyperparameter to tune. To
facilitate the training, our work uses simpletransformers [24], huggingface transformer
[25] and PyTorch framework [26]. The overall pipeline is shown in Figure
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BERT extension validation selection training model
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Figure 1. Training/evaluation pipeline and task description.

The input format must be compatible with the rxnfp model and we therefore use
the same RDKit [27] reaction canonicalisation and SMILES tokenization [6] as in the
rxnfp work [17].

3. High-throughput experiment yield predictions

3.1. Buchwald-Hartwig reactions

Ahneman et al. [9] performed high-throughput experiments on Pd-catalysed Buchwald—
Hartwig C-N cross coupling reactions and measured the yields. For the experiments,
they used three 1536-well plates spanning a matrix of 15 aryl and heteroaryl halides,
4 Buchwald ligands, 3 bases, and 23 isoxazole additives resulting in 4140 reactions.
As inputs for their random forest models, Ahneman et al. computed 120 molecular,
atomic and vibrational properties with density functional theory using Spartan for every
halide, ligand, base and additive combination. The descriptors included HOMO and
LUMO energy, dipole moment, electronegativity, electrostatic charge and NMR shifts
for atoms shared by the reagents. The work of Ahneman et al. [9] was challenged
by Chuang and Keiser [10], who pointed out several issues. First, by replacing the
computed chemical features with random features of the same length or one-hot encoded
vectors Chuang and Keiser got similar performance than the original paper with the
chemical features. Therefore, they weakened the original claim that additive features
were the most important for the predictions. Moreover, the additive features were still
estimated to be the most important features by the random forest model when the
yields were shuffled. Recently, Sandfort et al. [I1] used a concatenation of multiple
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molecular fingerprints as alternative reaction representation to demonstrate superior
yield prediction performance compared to one-hot encoding.

Unlike previous work, we use directly the reaction SMILES as input to a
BERT-based reaction encoder [17] enriched with a regression layer (Yield-BERT). To
investigate the suggested method, we used the same splits as Sandfort et al. [I1]. In
contrast, to their work, we used 1/7 of the training set from the first random split as
validation set to select optimal values for our two hyperparameters, namely, learning
rate and dropout probability. Once selected, the hyperparameters were kept the same
for all the subsequent experiments. The number of training epochs was set to 15.

Table 1. Summary of the results on the Buchwald—Hartwig data set. We used the
same 10 random splits as in the work of Sandford et al. [11]. The Yield-BERT results
shown in this table used the rxnfp pretrained model as base encoder [17]

R? ‘ Ahneman one-hot MFF ‘ Yield-BERT
random 70/30 ‘ 0.92 0.89 0.927 + 0.007 ‘ 0.944 + 0.009
random 20,80 0.85 £ 0.01
random 10/90 0.78 £+ 0.02
random 5/95 0.61 &+ 0.08
test 1 0.8 0.69 0.85 0.84

test 2 0.77 0.67 0.71 0.90

test 3 0.64 0.49 0.64 0.70

test 4 0.54 0.49 0.18 0.35

test avg. 1-4 | 0.69 0.59 0.60 0.70

The results are shown in Table[I] Using solely a reaction SMILES representation,
our method achieves an average R? of 0.9443 on the random splits and outperforms not
only the MFF by Sandfort et al. [I1], but also the chemical descriptors computed with
DFT by Ahneman et al. [9]. Moreover, for the out-of-sample tests where the isoxazole
additives define the splits our method performs on average better than MFF and one-
hot descriptors and comparable to the chemical descriptors. As in the work of Sandfort
et al. [11], the test 3 split resulted in the worst model performance. For the rest of
the out-of-sample, our method performs better than the others. We also reduced the
training set to 5% (207 reactions), 10% (414 reactions) and 20% (828 reactions) and
observed that the model learned to reasonably predict yields despite the significantly
smaller training set.

3.2. Suzuki-Miyaura reactions

Perera et al. [2I] performed another HTE analysing Suzuki-Miyaura reactions. They
considered 15 pairs of electrophiles and nucleophiles, each leading to a different product.



Prediction of Chemical Reaction Yields using Deep Learning 6

For each pair, they varied the ligands (12 in total), bases (8), and solvents (4), resulting
in a total of 5760 measured yields. The same data set was also investigated in the work
of Granda et al. [12].

For this data set, we first trained our yield prediction models with the same
hyperparameters as for the Buchwald—Hartwig reaction experiment above and achieve
already an R? score of 0.794:0.01. Second, we tuned the dropout probability and learning
rate, similarly to the previous experiment, using a split of the training set of the first
random split. The resulting hyperparameters were then used for all the splits. The
hyperparameter tuning did not lead to better performance compared to the parameters
used for the Buchwald-Hartwig reactions. This shows that the models have a stable
performance for a wide range of parameters and that they are transferable from one
data set to another related data set.

Table 2. Summary of the average R? scores on the Suzuki-Miyaura reactions data set
using a Yield-BERT with different base encoders. We used 10 different random folds

(70/30).
Base encoder rxnfp [17] | pretrained | pretrained | ft ft
Hyperparameters same as 3.1 | tuned same as 3.1 tuned
random 70/30 [ 0.79 +0.01 | 0.79 £ 0.02 | 0.81 =+ 0.02 | 0.81 + 0.01

We also compared two different base encoder models that are available from the
rxnfp library [17], namely the BERT model only pretrained with a masked language
modelling task, and the BERT model which was subsequently fine-tuned on a reaction
class prediction task. The results are displayed in Table 2| In contrast to the Buchwald—
Hartwig data set, where no difference between the two base encoders was observed, the
ft model achieving an R? score of 0.81 % 0.01 outperforms the pretrained base encoder
on the Suzuki-Miyaura reactions.

3.3. Discovery of high yielding reactions with reduced training sets

One of the experiments performed by Granda et al. [12] was to train on random 10% of
the data to evaluate the rest of the reactions and select the next reactions to test. In
this study, we ran a similar experiment. We trained our models on different fractions of
the training set and used them to evaluate the yields of the remaining reactions. The
aim here is to evaluate how well the models are at selecting high-yielding reactions after
having seen a small fraction of randomly chosen reactions.

As can be seen from Figure [2] training on only 5% of the reactions already enables
a chemist to select some of the highest yielding reactions for the next round of the
experiments. With a training set of 10% the yields of the selected reactions are close
to the best possible selection marked with “ideal” in the Figure. For the Buchwald—
Hartwig reaction, using a model trained on 10% of the data set, the 10 reactions from
the remaining unseen data set predicted to have the highest yields, have an average yield
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Figure 2. Average and standard deviation of the yields for the 10, 50, and 100
reactions predicted to have the highest yields after training on a fraction of the data
set (5%, 10%, 20%). The ideal reaction selection and a random selection are plotted
for comparison.

of 95 + 4 %, compared to the ideal selection of 98.7 & 0.9 %. In contrast, a random
selection of 10 reactions would have let to yields of 34 4+ 27 %. The selection works
similarly for the Suzuki-Miyaura reactions.

We performed a purely greedy selection, as we aimed to find highest yielding
reactions after one training round. A wider chemical reaction space exploration with
a reaction selection using more elaborate uncertainty estimates and an active learning
strategy was investigated by Eyke et al. [14].

4. Patent yield predictions

In this section, we analyse USPTO data set [22] 23] yields. We started from the same
set as in our previous work [28], keeping only reactions for which yields and product
mass were reported. In contrast to HTE, where reactions are typically performed in
sub-gram scale, the patent data contains reactions spanning a wider range, from grams
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sub-grams scales.

4.1. Gram versus sub-gram scale

When investigating the yields for different mass scales, we observed that gram and sub-
gram scales had statistically different yield distributions, as shown in Figure One
reason could be that the reaction sub-gram scale reactions are generally less optimised
than gram-scale. In sub-gram scale, the primary goal is to show that the desired product
is present. To be able to synthesise a specific compound on a larger scale, reactions are
optimised and predominantly high yielding reactions are employed. Therefore, we split
the USPTO reactions into two data sets according to the product mass. If for the same
canonical reaction SMILES multiple yields were reported in the same mass scale, we
took the average of those yields.

Yield distributions - USPTO
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Figure 3. USPTO yields distribution separated in gram and sub-gram scale

We performed various experiments summarised in Table [3l The R? scores for the
randomly train-test splits with 0.117 for gram scale and 0.195 low. As expected, the
tasks becomes even more difficult when the time split is used. In our experiment, we
took all reactions first published in 2012 and before as training/validation set and the
reactions published after 2012 as test set. To show that the model was still able to learn
something from the reactions we performed a sanity check, where we randomised the
yields across the training reactions. The resulting performance on the test set was a R?
score of 0.

Unfortunately, the yields from the USPTO data set could not be accurately
predicted. To better understand why, we further inspected the USPTO reaction yields
with a visual analysis using reaction atlases built using TMAP [29], faerun [30] and our
reaction fingerprints [17]. Figure [4| reveals that globally reaction classes tend to have
similar yields. However, if a local neighbourhood is analysed the nearest neighbours
often have extremely diverse reaction yields. Those diverse yields make it challenging
for the model to learn anything but yield averages for similar reactions and hence,
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Table 3. Summary of the R? scores on the different USPTO reaction sets.

scale ‘ gram ‘ sub-gram
random split 0.117 | 0.195
time split 0.095 | 0.142
random split (smoothed) ‘ 0.277 ‘ 0.388
randomized yields ‘ 0.0 ‘ 0.0

explain the low performance on the patent reactions. This analysis opens up relevant
questions on the quality of the reported information (relative to the mass scale) and its
extraction accuracy from text, which could severely hamper the development of reaction
yield predictive models. The need of cleaned and consistent reaction yields data set is
even more important than for other reaction prediction tasks.

In Table 3] the "random split (smoothed)” row shows an experiment inspired from
the observations above. As some of the yields values are probably incorrect in the data
set, we smoothed the yields by computing the average of the three nearest neighbour
yields plus twice the own yield of the reaction. The nearest neighbours were estimated
using the rznfp ft [17] and faiss [31]. On the smoothed data sets, the performance of our
models more than triples in the gram scale and doubles on the sub-gram scale, achieving
R? scores of 0.277 and 0.388, respectively. The removal of noisy reactions [32] or reaction
data augmentation techniques [33] could potentially lead to further improvements.

5. Conclusion

In this work, we combined a reaction SMILES encoder with a reaction regression task
to design a reaction yield predictive model. We analysed two HTE reaction data sets,
showing excellent results. On the Buchwald-Hartwig reaction data set our models
outperform previous work on random splits and perform similar to models trained on
chemical descriptors computed with DF'T on test sets where specific additives were held
out from the training set.

We analysed the yields in the public patent data and show that the distribution of
reported yields strongly differs depending on the reaction scale. Because of intrinsic lack
of consistency and quality in the patent data, our proposed method fails to accurately
learn to predict patent reaction yields. While we cannot rule out the existence of
any other architecture potentially performing better than the one presented in this
manuscript, we raise the need for a more consistent and better quality public data set
for the development of reaction yields prediction models. The suspect that the yields
in the patent data are inconsistently reported is substantiated by the large variability
of methods used to purify and report yields, by the different reaction mass scales and
by the different amount of optimisation in each reported reaction. Our reaction atlases
[30} 29] 17] reveal globally higher yielding reaction classes, however, nearest neighbours
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Figure 4. Reaction Atlases. Top: gram scale. Bottom: sub-gram scale. Left:
Reaction superclass distribution, reactions belonging to the same superclass have the
same colour. Right: Corresponding reaction yields.

often have significantly scattered yields. We show that better results can be achieved
by smoothing the yields in the patent data using the nearest neighbours.

Our approach to yield predictions can be extended to any reaction regression task,
for example, for the prediction of reaction activation energies [34] 135], and is expected
to have a broad impact in the field of organic chemistry.

The code and public data will be made available on https://github.com/
rxn4chemistry/rxn_yields upon publication.
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1. Detailed results on Buchwald Hartwig reactions

Figure|S1{S17 show the correlation between the measured yields and the predicted yields
for all the different splits published by Sandfort et al. [I].
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2. Detailed results on Suzuki-Miyaura reactions

11

Figure [S194528 show the correlation between the measured yields and the predicted

yields for model with the rznfp ft base encoder on the 10 random splits.
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3. Detailed analysis of USPTO yields data

Tables [S1| and [S2] show the yields average in the random split test set for the different
reaction superclasses.

Table S1. Test set sub-gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count
0 Unrecognised 52.1 26.8 12359
1 Heteroatom alkylation and arylation 53.3 25.8 12995
2 Acylation and related processes 54.8 25.6 10583
3 C-C bond formation 53.2 25.6 5111
4 Heterocycle formation 48.0 25.1 2043
) Protections 69.8 22.3 527

6 Deprotections 68.7 25.2 8542
7 Reductions 67.5 26.1 3528
8 Oxidations 63.4 25.3 1078
9 Functional group interconversion (FGI) 62.3 25.2 2779
10 Functional group addition (FGA) 56.2 25.1 863

Figure [S29 shows the distributions of the smoothed yields. To smooth the yields of
the USPTO data set [2] 3] we calculated the average of the 3 nearest-neighbours of the



CONTENTS 17

Table S2. Test set gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count
0 Unrecognised 69.4 22.0 10327
1 Heteroatom alkylation and arylation 71.9 20.9 7912
2 Acylation and related processes 74.5 19.7 4745
3 C-C bond formation 70.7 20.0 2547
4 Heterocycle formation 67.1 22.9 1417
) Protections 79.9 18.5 1154
6 Deprotections 82.2 16.9 3332
7 Reductions 81.2 18.2 3105
8 Oxidations 76.0 18.8 742

9 Functional group interconversion (FGI) 74.9 20.1 2751
10 Functional group addition (FGA) 71.7 21.7 1491

reaction, computed using the rznfp ft [4] and faiss [5], and twice the own reaction yield.

Yield distributions - USPTO smoothed 4NN-2
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Figure S29. Smoothed USPTO yields distribution separated in gram and sub-gram
scale

4. Model selection

The two hyperparameters we tuned were dropout rate (between 0.05 and 0.8) and
learning rate (between le-6 and le-4). For the ranfp pretrained model on the Buchwald-
Hartwig reactions a learning rate of 9.659e-05 and dropout probability of 0.7987 led to
the highest validation R? score. We observe high R? scores for a wide range of dropout
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probabilities. The hyperparameter tuning was performed on a single Nvidia RTX 2070
super GPU and the optimal hyperparameters were found in less than 12 hours. A typical
training run (10 epochs) on the same hardware takes 4 minutes and 30 seconds. We
trained the final models for 15 epochs.

On the Suzuki-Miyaura reactions, we selected a learning rate of 5.812e-05 and
dropout probability of 0.5848 for the rxnfp pretrained base encoder and a learning rate
of 9.116e-05 and dropout probability 0.7542 for the rznfp ft base encoder model.

On the USPTO data we performed a hyperparameter search using a reduced
training set of 50k reactions and only 3 epochs. We selected a learning rate of 1.562e-
05 and dropout probability of 0.5237 for the gram scale and 2.958e-05 and 0.5826
respectively, for the sub-gram scale. The final models were trained for 2 epochs on
the complete training data, as an evaluation showed signs of over-fitting from the third
epochs on.
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